
CS143 Handout 21S

Summer 2012 July 30th, 2012

CS143 Midterm Exam Solutions
The distribution of the exam grades was as follows:

≤ 70 71 – 80 81 – 90 91 – 100 101 – 110 111 – 120

Overall, the final statistics were as follows:

Mean: 96 / 120

Median: 100 / 120

Standard Deviation: 17

We are not grading this course using raw point totals and will instead be grading on a (fairly
generous) curve. Roughly speaking, the median score corresponds to roughly a B/B+. If you
scored 85 or lower, we suggest getting in touch with us. As always, if you have any comments or
questions about the midterm or your grade on the exam, please don't hesitate to drop by office
hours! You can also email the staff list with questions.

If you think that we made any mistakes in our grading, please feel free to submit a regrade
request to us. Just write a short (one-paragraph or so) description of what you think we graded
incorrectly, staple it to the front of your exam, and hand your exam to Jinchao or to Keith by
Monday, August 6 at 4:00 PM. We reserve the right to regrade your entire exam if you submit it
for a regrade.

2 / 13

Problem One: Scanning (15 Points)

Consider the following flex script:

%%

aa { printf("1"); }

b?a+b? { printf("2"); }

b?a*b? { printf("3"); }

.|\n { printf("4"); }

a. Give an example of an input to this scanner that will produce 123 as an output, or explain why
one does not exist.

No such input exists. In order for the input to produce 1 at the start, the first two
characters must be "aa". Now consider the next character. If it's an 'a,' then, using
maximal-munch, the scanner would match rule 2 over rule 1, so 1 wouldn't be printed out.
If it's a 'b,' the same is true. If it's anything else, then rule 1 will match "aa," but the next
character won't match any of the previous rules, so a 4 will be printed out instead of a 2.

b. Give an example of an input to this scanner that will produce 321 as an output, or explain why
one does not exist.

One possible input is bbbabaa. Maximal-munch tokenizes this as bb, bab, aa, which
prints 321.

3 / 13

Problem Two: LL(1) Parsing (30 points total)
This question concerns the following grammar, which generates email addresses:

 Addr → Name @ Name . id

 Name → id | id . Name

For example, this could generate the addresses

id@id.id

id.id@id.id.id.id

id.id.id@id.id

(i) LL(1) Conflicts (15 Points)

This grammar, as written, is not LL(1). Rewrite the grammar to eliminate all LL(1) conflicts.

Here is one grammar:

Addr → Name @ id . Name

Name → id Name'

Name' → ε | . id Name'

A common mistake on this question was to left-factor the Name nonterminal productions,
but to forget to adjust the initial rule. If you don't interchange the last symbols of the first
production, there will be a FIRST/FOLLOW conflict with the Name' rule.

mailto:id@id.id
mailto:id.id.id@id.id
mailto:id.id@id.id.id.id

4 / 13

(ii) FIRST and FOLLOW Sets (5 Points)

Construct the FIRST and FOLLOW sets for all nonterminals in your rewritten grammar.

For our grammar, the FIRST sets are

FIRST(Addr) = { id }

FIRST(Name) = { id }

FIRST(Name') = { ., ε }

The FOLLOW sets are

FOLLOW(Addr) = { $ }

FOLLOW(Name) = { @, $ }

FOLLOW(Name') = { @, $ }

5 / 13

(iii) LL(1) Parse Tables (10 Points)

Using your results from part (ii), construct the LL(1) parse table for your updated grammar. If
you identify any LL(1) conflicts, don't worry; just put all applicable entries in the table. In other
words, if you discover now that your grammar is not LL(1), we won't hold that against you for
this part of the problem.

To save you time drawing the table, we've already provided the columns in the table. You just
need to provide the rows.

For our grammar, the table is as follows

id . @ $

Addr Name @id. Name

Name id Name'

Name' . id Name' ε ε

6 / 13

Problem 3: LR Parsing (50 Points Total)
Consider the following (already augmented) grammar, which is known to be LR(1):

 S → Z
 Z → aMa | bMb | aRb | bRa
 M → c
 R → c

(i) LR(1) Parsing (14 Points)
Draw the states of the LR(1) automaton encountered during a parse of the input aca. You
should not construct the entire LR(1) automaton; instead, just show the states of the automaton
that you actually use during the parse. If you accidentally construct irrelevant states, cross them
out. Do not add or change any productions in the grammar.

S → ·Z $
Z → ·aMa $
Z → ·bMb $
Z → ·aRb $
Z → ·bRa $

Z → a·Ma $
Z → a·Rb $
M → ·c a
R → ·c b

Z → aM ·a $ Z → aMa· $

M → c· a
R → c· b

S → Z· $Z

a

a

a

M

start

7 / 13

(ii) SLR(1) and LALR(1) Parsing (15 Points)

a. Given the grammar and the subset of the LR(1) automaton that you constructed in part (i), can
you determine whether this grammar is SLR(1)? If you can decide whether the grammar is
SLR(1), do so and explain your reasoning. If you cannot decide, explain why not.

We can decide that this grammar is not SLR(1). The LR(1) state

M → c · a

R → c · b

Corresponds to the SLR(1) state

M → c · FOLLOW(M)

R → c · FOLLOW(R)

Since FOLLOW(M) = FOLLOW(R) = { a, b }, this means that we have a reduce/reduce
conflict in this state when using an SLR(1) parser. Thus the grammar is not SLR(1).

b. Given the grammar and the subset of the LR(1) automaton that you constructed in part (i), can
you determine whether this grammar is LALR(1)? If you can decide whether the grammar is
LALR(1), do so and explain your reasoning. If you cannot decide, explain why not.

We cannot decide whether this grammar is LALR(1). Without seeing either the entire
LR(0) automaton or the entire LR(1) automaton, we can't construct the LALR(1)
lookaheads.

Some of you noticed that the grammar displays symmetries between a and b, and used this
to conclude (correctly) that the grammar is not LALR(1). We didn't require you to answer
this way, though.

8 / 13

(iii) Parsing Efficiency (20 Points)
Consider the following (already augmented) grammars for the language a*:

S → A
A → Aa | ε

and

S → A
A → aA | ε

Both of these grammars are SLR(1). However, the SLR(1) parser for one of these grammars will
use O(n) space in its parsing stack when run on the string an, while the other parser will only use
O(1) stack space.

Identify which grammar's parser uses O(n) stack space and which grammar's parser uses O(1)
stack space. Justify your answer by making specific references to how an SLR(1) parser for each
grammar parses strings of the form an. In other words, even if you can figure out why one parser
uses O(n) stack space, you should still explain why the other parser uses only O(1) stack space.

The first grammar uses O(1) stack space, and the second O(n). There are many ways that
you can justify this; here are a few.

(1) An SLR(1) parser traces out a rightmost derivation in reverse. If we try deriving an
using both grammars, we get the following two rightmost derivations:

S S

Aa aA

Aaa aaA

Aaaa aaaA

Aaaaa aaaaA

… …

Since in a shift/reduce parse all reductions occur at the top of the parsing stack, this means
that in the case of the first grammar the parsing stack never has more than two symbols on
it, because the reduction performed is A → Aa. If there were more than two symbols on
the parsing stack, we couldn't do this reduction. The second grammar, on the other hand,
does the reduction A → aA, meaning that there will be a string of O(n) a's on the parsing
stack, followed by the A for which the reduction is done.

9 / 13

(2) We could construct the parsing automata for these grammars:

Notice that in the the automaton for the first grammar, there are no cycles. This means
that we cannot take more than two steps before ultimately applying a reduction.
Moreover, of those transitions, only one of them occurs on a terminal. This means that we
will shift at most one terminal before doing a reduction, and since that reduction (A → Aa)
removes a terminal from the stack, the stack height can't get any higher than O(1).

In the second automaton, however, there is a cycle in the automaton. If we see the string
an, we will keep cycling from the second state into itself O(n) times before we are allowed to
do the reduction A → ε. This means that our parsing stack will have O(n) symbols on it
before the first reduction occurs.

(3) We could note that FOLLOW(A) = { a, $ } in the first grammar, while in the second
grammar it's { $ }. Since SLR(1) parsers always reduce on the FOLLOW set, this means
that (for the first grammar) we will always reduce A → Aa as soon as it gets on the parsing
stack, but for the second grammar we can't do any reductions until the lookahead is $,
which occurs when the last terminal has been shifted.

S → · A $
A → · Aa a$
A → · a$

S → A · $
A → A·a a$

A → Aa· a$A a

S → · A $
A → · aA $
A → · $

A → a·A $
A → · aA $
A → · $

A → aA· $

S → A· $

a

 a

A

A

start

start

10 / 13

(4) We could trace out sample parses for each grammar:

Stack Input Action

aa$ Reduce A → ε

A aa$ Shift

Aa a$ Reduce A → Aa

A a$ Shift

Aa $ Reduce A → Aa

A $ Reduce S → A

S $ Accept

Notice that the stack never has more than two symbols on it. As soon as we reduce A → ε,
the stack will never grow past Aa, since whenever we reach Aa we will do a reduction back
to A. Thus the stack has height O(1).

On the other hand, the second parser will operate as follows:

Stack Input Action

aaa$ Shift

a aa$ Shift

aa a$ Shift

aaa $ Reduce A → ε

aaaA $ Reduce A → aA

aaA $ Reduce A → aA

aA $ Reduce A → aA

A $ Reduce S → A

S $ Accept

Here, the only way to remove a's from the stack is to reduce with the rule A → aA, but this
is only possible once an A is pushed onto the stack, which only happens when we use the
rule A → ε, and this can only occur when the lookahead is $. Consequently, the parser will
have to shift all the a's before it can reduce them, which requires O(n) stack space.

11 / 13

Problem Four: Comparative Parsing (25 Points Total)

(i) LL(1) and LR(1) Parsing (15 Points)
Consider the following (already-augmented) grammar, which is both LL(1) and LR(1):

 S → A (1)

 A → aBE (2)

 B → bCD (3)

 C → c (4)

 D → d (5)

 E → e FG (6)

 F → f (7)

 G → g (8)

This question has two parts.

a. List which productions are performed and in which order when parsing the string abcdefg
with an LL(1) parser. Explain why they are performed in this order.

An LL(1) parser traces a leftmost derivation. Here is a leftmost derivation of abcdefg,
along with the rules applied at each step:

 ⇒ S

 A⇒ (1) S → A

 ⇒ aBE (2) A → aBE

 ⇒ abCDE (3) B → bCD

 ⇒ abcDE (4) C → c

 ⇒ abcdE (5) D → d

 ⇒ abcdeFG (6) E → eFG

 ⇒ abcdefG (7) F → f

 ⇒ abcdefg (8) G → g

12 / 13

b. List which reductions are performed and in which order when parsing the string abcdefg
with an LR(1) parser. Explain why they are performed in this order.

An LR(1) parser traces a rightmost derivation in reverse. Here is a rightmost derivation of
the string abcdefg:

 ⇒ S

 A⇒ (1) S → A

 ⇒ aBE (2) A → aBE

 ⇒ aBeFG (6) E → eFG

 ⇒ aBeFg (8) G → g

 ⇒ aBefg (7) F → f

 ⇒ abCDefg (3) B → bCD

 ⇒ abCdefg (5) D → d

 ⇒ abcdefg (4) C → c

Thus the reductions are done in order 4, 5, 3, 7, 8, 6, 2, 1:

C → c

D → d

B → bCD

F → f

G → g

E → eFG

A → aBE

S → A

13 / 13

(ii) Manual Conflict Resolution (10 Points)

When writing LR parsers, it is common to introduce precedence and associativity declarations to
allow the parser to parse ambiguous grammars. However, these declarations cannot be used in
LL(1) parsers. This question explores why.

Consider the following ambiguous grammar:

E → E + E
E → E * E
E → int
E → (E)

Explain why this grammar cannot be parsed with an LL(1) parser, even if the parser knew the
relative precedences and associativities of addition and multiplication.

LL(1) parsers are given just the current nonterminal and one token of lookahead to make
the decision about which production to use. Even if the parser knew the precedences of
addition and multiplication, when deciding whether to produce E → E + E or E → E * E,
the parser only sees the next token of lookahead, meaning that it can't see what operator is
being applied. Consequently, even knowing the relative precedence won't help the parser,
since the parser can't see far enough ahead into the input to determine which operator is
applied first.

	Problem One: Scanning (15 Points)
	Problem Two: LL(1) Parsing (30 points total)
	(i) LL(1) Conflicts (15 Points)
	(ii) FIRST and FOLLOW Sets (5 Points)
	(iii) LL(1) Parse Tables (10 Points)

	Problem 3: LR Parsing (50 Points Total)
	(i) LR(1) Parsing (14 Points)
	(ii) SLR(1) and LALR(1) Parsing (15 Points)
	(iii) Parsing Efficiency (20 Points)

	Problem Four: Comparative Parsing (25 Points Total)
	(i) LL(1) and LR(1) Parsing (15 Points)
	Consider the following (already-augmented) grammar, which is both LL(1) and LR(1):
	S → A (1)
	A → aBE (2)
	B → bCD (3)
	C → c (4)
	D → d (5)
	E → e FG (6)
	F → f (7)
	G → g (8)
	This question has two parts.
	a. List which productions are performed and in which order when parsing the string abcdefg with an LL(1) parser. Explain why they are performed in this order.
	An LL(1) parser traces a leftmost derivation. Here is a leftmost derivation of abcdefg, along with the rules applied at each step:
	⇒ S
	⇒ A (1) S → A
	⇒ aBE (2) A → aBE
	⇒ abCDE (3) B → bCD
	⇒ abcDE (4) C → c
	⇒ abcdE (5) D → d
	⇒ abcdeFG (6) E → eFG
	⇒ abcdefG (7) F → f
	⇒ abcdefg (8) G → g
	b. List which reductions are performed and in which order when parsing the string abcdefg with an LR(1) parser. Explain why they are performed in this order.
	An LR(1) parser traces a rightmost derivation in reverse. Here is a rightmost derivation of the string abcdefg:
	⇒ S
	⇒ A (1) S → A
	⇒ aBE (2) A → aBE
	⇒ aBeFG (6) E → eFG
	⇒ aBeFg (8) G → g
	⇒ aBefg (7) F → f
	⇒ abCDefg (3) B → bCD
	⇒ abCdefg (5) D → d
	⇒ abcdefg (4) C → c
	Thus the reductions are done in order 4, 5, 3, 7, 8, 6, 2, 1:
	C → c
	D → d
	B → bCD
	F → f
	G → g
	E → eFG
	A → aBE
	S → A
	(ii) Manual Conflict Resolution (10 Points)
	Explain why this grammar cannot be parsed with an LL(1) parser, even if the parser knew the relative precedences and associativities of addition and multiplication.
	LL(1) parsers are given just the current nonterminal and one token of lookahead to make the decision about which production to use. Even if the parser knew the precedences of addition and multiplication, when deciding whether to produce E → E + E or E → E * E, the parser only sees the next token of lookahead, meaning that it can't see what operator is being applied. Consequently, even knowing the relative precedence won't help the parser, since the parser can't see far enough ahead into the input to determine which operator is applied first.

