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The distribution of the exam grades was as follows:

≤ 70 71 – 80 81 – 90 91 – 100 101 – 110 111 – 120

Overall, the final statistics were as follows:

Mean: 96 / 120

Median: 100 / 120

Standard Deviation: 17

We are not grading this course using raw point totals and will instead be grading on a (fairly 
generous) curve.  Roughly speaking, the median score corresponds to roughly a B/B+.  If you 
scored 85 or lower, we suggest getting in touch with us.  As always, if you have any comments or 
questions about the midterm or your grade on the exam, please don't hesitate to drop by office 
hours!  You can also email the staff list with questions.

If you think that  we made any mistakes in our grading, please feel free to submit  a regrade 
request to us.  Just write a short (one-paragraph or so) description of what you think we graded 
incorrectly, staple it to the front of your exam, and hand your exam to Jinchao or to Keith by 
Monday, August 6 at 4:00 PM.  We reserve the right to regrade your entire exam if you submit it 
for a regrade.
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Problem One: Scanning (15 Points)

Consider the following flex script:

%%

aa { printf("1"); }

b?a+b? { printf("2"); }

b?a*b? { printf("3"); }

.|\n { printf("4"); }

a. Give an example of an input to this scanner that will produce 123 as an output, or explain why 
one does not exist.

No such input exists.  In order for the input to produce 1 at the start, the first two 
characters must be "aa".  Now consider the next character.  If it's an 'a,' then, using 
maximal-munch, the scanner would match rule 2 over rule 1, so 1 wouldn't be printed out. 
If it's a 'b,' the same is true.  If it's anything else, then rule 1 will match "aa," but the next 
character won't match any of the previous rules, so a 4 will be printed out instead of a 2.

b. Give an example of an input to this scanner that will produce 321 as an output, or explain why 
one does not exist.

One possible input is bbbabaa.  Maximal-munch tokenizes this as bb, bab, aa, which 
prints 321.
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Problem Two: LL(1) Parsing (30 points total)
This question concerns the following grammar, which generates email addresses:

     Addr → Name @ Name . id

     Name → id | id . Name

For example, this could generate the addresses

id@id.id

id.id@id.id.id.id

id.id.id@id.id

(i) LL(1) Conflicts (15 Points)

This grammar, as written, is not LL(1).  Rewrite the grammar to eliminate all LL(1) conflicts.

Here is one grammar:

Addr → Name @ id . Name

Name → id Name'

Name' → ε | . id Name'

A common mistake on this question was to left-factor the Name nonterminal productions, 
but to forget to adjust the initial rule.  If you don't interchange the last symbols of the first 
production, there will be a FIRST/FOLLOW conflict with the Name' rule.

mailto:id@id.id
mailto:id.id.id@id.id
mailto:id.id@id.id.id.id


4 / 13

(ii) FIRST and FOLLOW Sets (5 Points)

Construct the FIRST and FOLLOW sets for all nonterminals in your rewritten grammar.

For our grammar, the FIRST sets are

FIRST(Addr) = { id }

FIRST(Name) = { id }

FIRST(Name') = { ., ε }

The FOLLOW sets are

FOLLOW(Addr) = { $ }

FOLLOW(Name) = { @, $ }

FOLLOW(Name') = { @, $ }
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(iii) LL(1) Parse Tables (10 Points)

Using your results from part (ii), construct the LL(1) parse table for your updated grammar.  If 
you identify any LL(1) conflicts, don't worry; just put all applicable entries in the table.  In other 
words, if you discover now that your grammar is not LL(1), we won't hold that against you for 
this part of the problem.

To save you time drawing the table, we've already provided the columns in the table.  You just 
need to provide the rows.

For our grammar, the table is as follows

id . @ $

Addr Name @id. Name

Name id Name'

Name' . id Name' ε ε
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Problem 3: LR Parsing (50 Points Total)
Consider the following (already augmented) grammar, which is known to be LR(1):

       S → Z
       Z → aMa | bMb | aRb | bRa
       M → c
       R → c

(i) LR(1) Parsing (14 Points)
Draw the states of the LR(1) automaton encountered during a parse of the input aca.  You 
should not construct the entire LR(1) automaton; instead, just show the states of the automaton 
that you actually use during the parse.  If you accidentally construct irrelevant states, cross them 
out.  Do not add or change any productions in the grammar. 

S → ·Z $
Z → ·aMa $
Z → ·bMb $
Z → ·aRb $
Z → ·bRa $

Z → a·Ma $
Z → a·Rb $
M → ·c a
R → ·c b

Z → aM ·a $ Z → aMa· $

M → c· a
R → c· b

S → Z· $Z   

a 

a 

a    

M         

start    
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(ii) SLR(1) and LALR(1) Parsing (15 Points)

a. Given the grammar and the subset of the LR(1) automaton that you constructed in part (i), can 
you determine whether this grammar is SLR(1)?  If you can decide whether the grammar is 
SLR(1), do so and explain your reasoning.  If you cannot decide, explain why not.

We can decide that this grammar is not SLR(1).  The LR(1) state

M → c · a

R → c · b

Corresponds to the SLR(1) state

M → c · FOLLOW(M)

R → c · FOLLOW(R)

Since FOLLOW(M) = FOLLOW(R) = { a, b }, this means that we have a reduce/reduce 
conflict in this state when using an SLR(1) parser.  Thus the grammar is not SLR(1).

b. Given the grammar and the subset of the LR(1) automaton that you constructed in part (i), can 
you determine whether this grammar is LALR(1)?  If you can decide whether the grammar is 
LALR(1), do so and explain your reasoning.  If you cannot decide, explain why not.

We cannot decide whether this grammar is LALR(1).  Without seeing either the entire 
LR(0) automaton or the entire LR(1) automaton, we can't construct the LALR(1) 
lookaheads.

Some of you noticed that the grammar displays symmetries between a and b, and used this 
to conclude (correctly) that the grammar is not LALR(1).  We didn't require you to answer 
this way, though.
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(iii) Parsing Efficiency (20 Points)
Consider the following (already augmented) grammars for the language a*:

S → A
A → Aa | ε

and

S → A
A → aA | ε

Both of these grammars are SLR(1).  However, the SLR(1) parser for one of these grammars will 
use O(n) space in its parsing stack when run on the string an, while the other parser will only use 
O(1) stack space.

Identify which grammar's parser uses O(n) stack space and which grammar's parser uses O(1) 
stack space.  Justify your answer by making specific references to how an SLR(1) parser for each 
grammar parses strings of the form an.  In other words, even if you can figure out why one parser 
uses O(n) stack space, you should still explain why the other parser uses only O(1) stack space.

The first grammar uses O(1) stack space, and the second O(n).  There are many ways that 
you can justify this; here are a few.

(1) An SLR(1) parser traces out a rightmost derivation in reverse.  If we try deriving an 
using both grammars, we get the following two rightmost derivations:

S S

Aa aA

Aaa aaA

Aaaa aaaA

Aaaaa aaaaA

… …

Since in a shift/reduce parse all reductions occur at the top of the parsing stack, this means 
that in the case of the first grammar the parsing stack never has more than two symbols on 
it, because the reduction performed is A → Aa.  If there were more than two symbols on 
the parsing stack, we couldn't do this reduction.  The second grammar, on the other hand, 
does the reduction A → aA, meaning that there will be a string of O(n) a's on the parsing 
stack, followed by the A for which the reduction is done.
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(2) We could construct the parsing automata for these grammars:

Notice that in the the automaton for the first grammar, there are no cycles.  This means 
that we cannot take more than two steps before ultimately applying a reduction.  
Moreover, of those transitions, only one of them occurs on a terminal.  This means that we 
will shift at most one terminal before doing a reduction, and since that reduction (A → Aa) 
removes a terminal from the stack, the stack height can't get any higher than O(1).

In the second automaton, however, there is a cycle in the automaton.  If we see the string 
an, we will keep cycling from the second state into itself O(n) times before we are allowed to 
do the reduction A → ε.  This means that our parsing stack will have O(n) symbols on it 
before the first reduction occurs.

(3) We could note that FOLLOW(A) = { a, $ } in the first grammar, while in the second 
grammar it's { $ }.  Since SLR(1) parsers always reduce on the FOLLOW set, this means 
that (for the first grammar) we will always reduce A → Aa as soon as it gets on the parsing 
stack, but for the second grammar we can't do any reductions until the lookahead is $, 
which occurs when the last terminal has been shifted.

S → · A $
A → · Aa a$
A → · a$

S → A · $
A → A·a a$

A → Aa· a$A a

S → · A $
A → · aA $
A → · $

A →  a·A $
A → · aA $
A → · $

A →  aA· $

S →  A· $

a

       a

A

A         

start

start
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(4) We could trace out sample parses for each grammar:

Stack Input Action

aa$ Reduce A → ε

A aa$ Shift

Aa a$ Reduce A → Aa

A a$ Shift

Aa $ Reduce A → Aa

A $ Reduce S → A

S $ Accept

Notice that the stack never has more than two symbols on it.  As soon as we reduce A → ε, 
the stack will never grow past Aa, since whenever we reach Aa we will do a reduction back 
to A.  Thus the stack has height O(1).

On the other hand, the second parser will operate as follows:

Stack Input Action

aaa$ Shift

a aa$ Shift

aa a$ Shift

aaa $ Reduce A → ε

aaaA $ Reduce A → aA

aaA $ Reduce A → aA

aA $ Reduce A → aA

A $ Reduce S → A

S $ Accept

Here, the only way to remove a's from the stack is to reduce with the rule A → aA, but this 
is only possible once an A is pushed onto the stack, which only happens when we use the 
rule A → ε, and this can only occur when the lookahead is $.  Consequently, the parser will 
have to shift all the a's before it can reduce them, which requires O(n) stack space.
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Problem Four: Comparative Parsing (25 Points Total)

(i) LL(1) and LR(1) Parsing (15 Points)
Consider the following (already-augmented) grammar, which is both LL(1) and LR(1):

        S → A (1)

        A → aBE (2)

        B → bCD (3)

        C → c  (4)

        D → d (5)

        E → e FG (6)

        F → f (7)

        G → g (8)

This question has two parts.

a. List which productions are performed and in which order when parsing the string abcdefg 
with an LL(1) parser.  Explain why they are performed in this order.

An LL(1) parser traces a leftmost derivation.  Here is a leftmost derivation of abcdefg, 
along with the rules applied at each step:

 ⇒ S

 A⇒ (1) S → A

 ⇒ aBE (2) A → aBE

 ⇒ abCDE (3) B → bCD

 ⇒ abcDE (4) C → c

 ⇒ abcdE (5) D → d

 ⇒ abcdeFG (6) E → eFG

 ⇒ abcdefG (7) F → f

 ⇒ abcdefg (8) G → g
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b. List which reductions are performed and in which order when parsing the string abcdefg 
with an LR(1) parser.  Explain why they are performed in this order.

An LR(1) parser traces a rightmost derivation in reverse.  Here is a rightmost derivation of 
the string abcdefg:

 ⇒ S

 A⇒ (1) S → A

 ⇒ aBE (2) A → aBE

 ⇒ aBeFG (6) E → eFG

 ⇒ aBeFg (8) G → g

 ⇒ aBefg (7) F → f

 ⇒ abCDefg (3) B → bCD

 ⇒ abCdefg (5) D → d

 ⇒ abcdefg (4) C → c

Thus the reductions are done in order 4, 5, 3, 7, 8, 6, 2, 1:

C → c

D → d

B → bCD

F → f

G → g

E → eFG

A → aBE

S → A
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(ii) Manual Conflict Resolution (10 Points)

When writing LR parsers, it is common to introduce precedence and associativity declarations to 
allow the parser to parse ambiguous grammars.  However, these declarations cannot be used in 
LL(1) parsers.  This question explores why.

Consider the following ambiguous grammar:

E → E + E
E → E * E
E → int
E → (E)

Explain why this grammar cannot be parsed with an LL(1) parser, even if the parser knew the 
relative precedences and associativities of addition and multiplication.

LL(1) parsers are given just the current nonterminal and one token of lookahead to make 
the decision about which production to use.  Even if the parser knew the precedences of 
addition and multiplication, when deciding whether to produce E → E + E or E → E * E, 
the parser only sees the next token of lookahead, meaning that it can't see what operator is 
being applied.  Consequently, even knowing the relative precedence won't help the parser, 
since the parser can't see far enough ahead into the input to determine which operator is 
applied first.
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